Saturday, December 13, 2014

Lactic Acidosis... is it really that bad? Oh yeah. It is bad!

Lactic acid is often associated with badness, and the higher the number the worse the patient is. However, producing lactate is an appropriate stress response, and when it accumulates due to poor utilization, it indicates serious cellular function problems.  This next diagram shows the differential diagnosis of metabolic acidosis and how to brake it down in a simple way, including lactic acidosis with and without ketosis.

Hyperlactatemia occurs when lactate production exceeds lactate consumption. In tissue hypoxia, whether global or localized, lactate is overproduced and underutilized as a result of impaired mitochondrial oxidation. Even if systemic oxygen delivery is not low enough to cause generalized hypoxia, microcirculatory dysfunction can cause regional tissue hypoxia and hyperlactatemia. Hyperlactatemia can also result from aerobic glycolysis, a term denoting stimulated glycolysis that depends on factors other than tissue hypoxia. Activated in response to stress, aerobic glycolysis is an effective, albeit inefficient, mechanism for rapid generation of ATP. In the hyperdynamic stage of sepsis, epinephrine-dependent stimulation of the β2-adrenoceptor augments the glycolytic flux both directly and through enhancement of the sarcolemmal Na+,K+-ATPase (which consumes large quantities of ATP). Other disorders associated with elevated epinephrine levels, such as severe asthma (especially with overuse of β2-adrenergic agonists), extensive trauma, cardiogenic or hemorrhagic shock, and pheochromocytoma, can cause hyperlactatemia through this mechanism. Drugs that impair oxidative phosphorylation, such as antiretroviral agents and propofol, can augment lactic acid production and on rare occasions cause severe lactic acidosis. Cardiogenic or hypovolemic shock, severe heart failure, severe trauma, and sepsis are the most common causes of lactic acidosis, accounting for the vast majority of cases.

An elevated serum anion gap, particularly a value higher than 30 mmol per liter, can provide supportive evidence. However, other causes of a raised anion gap, such as ketoacidosis and toxic alcohol ingestion, should always be considered. A normal anion gap does not rule out lactic acidosis. In one study, 50% of patients with a serum lactate level of 5 to 10 mmol per liter did not have an elevated anion gap. Correction of the anion gap for the effect of serum albumin can improve its sensitivity, but many cases will still escape detection. Therefore, the serum anion gap lacks sufficient sensitivity or specificity to serve as a screening tool for lactic acidosis. An elevated blood lactate level is essential for confirmation of the diagnosis. Previously, the definition of lactic acidosis included a blood pH of 7.35 and a serum [HCO3] of 20 mmol per liter or lower. However, the absence of one or both of these features because of coexisting acid–base disorders does not rule out lactic acidosis.

When treating patient with Lactic Acidosis, restoring tissue perfusion after hemodynamic compromise is essential in the treatment of patients with lactic acidosis. Vasopressors and inotropic agents should be administered as needed. Crystalloid and colloid solutions are both effective in restoring tissue perfusion in patients with sepsis or hypovolemia. Red-cell transfusions should be administered to maintain the hemoglobin concentration at a level above 7 g per deciliter. An adequate PO2 should be maintained by ensuring an appropriate inspired oxygen concentration, with endotracheal intubation and mechanical ventilation as needed. Given the potentially deleterious effects of an acidic environment, some clinicians recommend therapy with intravenous sodium bicarbonate for severe acidemia (blood pH, <7.2). However, the value of bicarbonate therapy in reducing mortality or improving hemodynamics remains unproven. Using dialysis to provide bicarbonate can prevent a decrease in ionized calcium, prevent volume overload and hyperosmolality (potential complications of bicarbonate infusion), and remove substances associated with lactic acidosis, such as metformin. Resuscitative efforts should be complemented by measures targeting the cause or causes of lactic acidosis.

Measurement of the blood lactate level remains the cornerstone of monitoring for lactic acidosis. Lactate can be measured in arterial or venous blood, since the values are virtually interchangeable. An interval of 2 to 6 hours has been suggested for repeat lactate measurements, but this issue has not been examined rigorously. Changes in levels of blood lactate have been used to guide therapy. In a randomized, controlled study, a reduction of at least 20% in serum lactate levels every 2 hours was targeted for the first 8 hours of resuscitation; achievement of this target of lactate clearance was associated with decreased morbidity and mortality. Evidence that in seriously ill patients even lactate levels at the upper end of the normal range are associated with poor clinical outcomes argues for the normalization of blood lactate as a primary goal of therapy

In summary:

- Lactic acid = Cellular dysfunction, and the higher the number, the sicker the patient is.
- Normal Anion Gap does not rule out lactic acidosis, nor does HCO3 or pH levels. Measured lactic acid is the best way to diagnose.
- When treating, focus on tissue perfusion first. Volume expansion, oxygenation (including mechanical ventilation), blood transfusion (if Hg < 7), bicarbonate infusions (maybe!), and dialysis are all appropriate in certain clinical scenarios.
 Lactate clearance of 10% per hour of treatment is a good treatment goal.